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Integrable system connected with the Coulomb three-body 
problem near two-particle thresholds 

I V Komarov 
Department of Theoretical Physics, Institute of Physics, Leningrad State University, 
Leningrad 199164, USSR 

Received 14 July 1987 

Abstract. The problem of mixing of degenerated sublevels of a hydrogen-like system by 
a charged particle is reconsidered from the point of view of the theory of integrable systems 
on Lie algebras. The Lax representation is constructed both in classical and quantum 
mechanics. The corresponding dynamical system is a special limit case of a four-sites XXX 
magnet considered by Gaudin. 

1. Introduction 

We consider a quantum mechanical system of three particles with charges Z,, z b ,  -1 
and masses mar m b ,  m, interacting via pair Coulomb potentials. Suppose that the 
particles b and c are bound and that particle a is at a large distance from the pair. 
The Hamiltonian of the pair bc has a degenerated spectrum and this degeneracy is 
removed by the interaction of the pair with the charged particle a. In Jacobi coordinates 
r = rab, i = ra,bc. When I? + 00 one has the asymptotical Hamiltonian 

where p = ma,bc/ mb, and R = i l l? The operator multiplier of connects the motions 
of r and R. If we neglect the mixing of eigenstates of hbc with different principal 
quantum numbers, the problem is drastically simplified. The physical idea can be 
formalised by the observation that the multiplier of E-' in (1) is a linear function of 
r and for a given shell with a fixed n there is an equivalence ( h  = 1) 

n 
PnrPn = -$--a. 

zb 

Here P, is a projector onto the subspace n and a is a normalised Runge-Lentz vector. 
The components of a and the angular momentum 1 of pair bc form an o(4) Lie algebra. 
Thus we arrive at the model Hamiltonian 
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The angular variables R obviously commute with E and p R ,  so the problem now is to 
find the spectrum A. This problem has a considerable literature (Nikitin and Ostrovsky 
1981, Herrick 1983). In this paper the problem is reconsidered from the point of view 
of the theory of integrable systems on Lie algebras and the Lax representation for it 
is constructed. 

2. The Lie algebra 0(4)0e(3) and the spectrum 

As mentioned before, a and 1 are the generators of the Lie algebra o(4) and also R 
and L form the Lie algebra e(3) of a Euclid Lie group, so we will study a dynamical 
system on the Lie algebra g = 0(4)0e(3) .  Its Casimir operators are 

1 2 +  a2  = n 2 -  1 

a1 = 0 

R R = 1  

RL = 0.  

The equality RL = 0 means that we restrict ourselves to spinless particles. If necessary 
this restriction can be removed. 

Let us consider an auxiliary dynamical system on the Lie algebra g with Hamiltonian 
A and let us introduce a time derivative according to the rule 

d 1  
-=-[A,  3. 
dr i 

A direct computation gives the equations of motion 

l = a R ~ a  c i = a R ~ l  

i = - a R A a  ~ = ~ R A L  
(7) 

where the symbol A denotes the vector product. The rank of the algebra g is four. 
The system with the Hamiltonian A is integrable (and even degenerated), because the 
operators 

B = aL i- f a l R  J = L + l  (8) 
commute with A and the components of the total angular momentum Ji form the Lie 
algebra su(2) (Nikitin and Ostrovsky 1978). To find the common spectra of A, B, J 2  
and J z ,  a few procedures based on the numerical diagonalisation of A in representation 
of the total angular momentum were presented. Both spherical and parabolic bases 
of the hydrogen atom were used (Vinitsky er al 1986). 

Let us consider limiting cases of the problem for different values of J and a. For 
J = 0 we arrive at diagonalisation of the operators 

= i2 - a a ~  (9a) 

Bo = f a l R  (9b) 
on the Lie algebra o(4). The solution is provided by the Coulomb spheroidal poly- 
nomials that are obtained after separation of variables in the hydrogen-like Hamiltonian 
hbc in prolate spheroidal coordinates (Komarov er al 1976). Their symmetry axis is 
directed from the centre of mass of b and c, to the particle a and the focal distance is 
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When J + 03, [Y = O( l ) ,  J becomes a classical vector directed along j = J / J  and the 
integrals of motion are 

[A - J ( J +  1 ) ] / 2 J  + X = A ( I l a )  

B / J +  Y =  Ja. ( I l b )  
A 

The integrals X and Y correspond to a parabolic basis of the hydrogen-like atom bc 
with symmetry axis directed along J, i.e. perpendicular to direction R on particle a. 

The special limiting case when J + CD and a + CO was considered by Nikitin and 
Ostrovsky (1978). Let us rearrange the algebra g by decomposing o(4) =0(3)@0(3) 

S = t ( r +  a )  

s2= T 2 = j ( j + 1 )  

and introducing the quantities 

I ( + ’ = J + & Y R  

The operator A becomes 

A = J 2  + I 2  - 2( P+’S + F I T ) .  (14) 

In the limit J + CO, [Y + CO, the vectors I“’ can be considered as classical ones. Then 
the .projection S onto the direction of I ( + )  and the projection T onto the direction of 
I ( - )  have values n’, n” = -j, - j  + 1,. . . , j  - 1 , j  and for the spectra of A and B one obtains 

A = J ( J  + 1) - 2w ( n’ + n”) ( 1 5 ~ )  

B = (n’ - n”) (15b) 

where w = [ J ( J  + 1) + [ ~ * / 4 ] “ ~ .  The solution can be interpreted in terms of the first-order 
perturbation theory for the hydrogen-like system bc in crossed electric and magnetic 
fields. 

3. Lax representation in classical mechanics 

The equations of motion (7) have a remarkable structure. On their right-hand sides 
there are products only of commuting pairs of generators of g and one of the multipliers 
of the vector products always coincides with R. This means that the equations are the 
same both in classical and in quantum mechanics. It also allows us to suppose the 
existence of a Lax representation. In other words, it is possible to construct matrices 
9( U, X )  and &(U, X )  depending on the set of generators X ={Si, T,, Ri, Li}  of algebra 
g and an arbitrary complex parameter U in such a manner that the matrix equation 

(16) 

is equivalent to the system of equations (7 ) .  Here the symbol [ , I m  denotes a 
commutator of matrices LE’.$? - d2. 

We will look for matrices LE’ and d of the minimal dimension two. A universal 
classical integrable model with a two-dimensional auxiliary space is a magnetic model 
(Takhtajan and Faddeev 1987). Because of the conservation of an arbitrary component 

=%U, x ) + [ a u ,  X I ,  &(U, X ) l m  = o  
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of the total angular momentum it is natural to use the XXX magnet having su(2) 
invariance. One can check that the Lax equation (16) with the matrices 

x = 2 / a  
1 R  

&(U) =:U- 
1 u  

is equivalent to equations (7). The existence of the Lax representation allows us to 
use ideas and results of the spectral transform method (STM) (Takhtajan and Faddeev 
1987). In classical mechanics det 2 ( u )  is an integral of motion. It is a meromorphic 
function of the complex variable U with coefficients which are also integrals of motion 

. (19) 
I1 12  1 3  14 I ,  I6 17 I8 +-+- -det 2 ( u )  =--,+,+,+-+- 
U U U U ( u - x ) 2 + u - x  ( U + X ) 2  u + x  

The coefficients of the highest degrees u - ~ ,  u - ~ ,  (U*%)-’ are absent in the matrix 
2 ( u )  and are determined by the Casimir operators of the algebra g 

I , = R 2 = 1  I ,  = s2 = ( n 2  - 1 ) /4  
(20) 

I , =  T2=(n2-1) /4 .  

The other coefficients are linearly connected with the constants of motion of the original 
problem introduced in (8): 

I2 = 2 R L = 0 

A = I 3  B = - ‘ X I  2 4  J 2  = X (  16 - 1 8 )  + 13  + I5 + 1 7 .  (21) 
There is also the linear identity 14+ &+ 18 = 0 which reflects a possibility to choose an 
additional operator, depending on Ji and therefore commuting with J 2 ,  A and B. 

The classical motion is constrained by an algebraic curve L f i ( u ) 2 i ( u )  = c2. After 
reducing the common denominator we obtain that the parameters U and w belong to 
the hyperelliptic algebraic curve 

p6( ) + w 2  = 0 (22) 
where p6( U )  is a polynomial of the sixth degree. The rank of the curve is two, therefore 
the equations of motion can be integrated in terms of Riemann 8 functions, depending 
on two variables (Dubrovin er a1 1976). The difference between the rank of the curve 
and the number of degrees of freedom reflects the su(2) invariance of the integrals of 
motion A and B under rotations of the system as a whole. 

4. Lax representation in quantum mechanics and connections with magnetic models 

In quantum mechanics we will work with the same matrix Lf( U )  defined by (17). The 
quantum commutator of the components z i ( u )  is 

1 
[ 2 i ( u ) ,  2 k ( ‘ ’ ) 1  = ig ik / - (21(U)-2 /1(U’) )  (23) U - U  

thus an infinite-dimensional Lie algebra (e appears. These commutational relations 
can be included in the scheme of the quantum spectral transform method (QSTM) 

(Kulish and Sklyanin 1982). Introducing 4 x 4 matrices 2= 2C3U and 2= U82 by a 
I 2 
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direct product with the 2 x 2 unit matrix 1 and introducing 

1 0 0 0  

0 0 0 1  

we rewrite (23) in the form 

1 2 1 2 
[Lf(u), L f ( u ’ ) ] = [ r ( u -  U’), Lf(u)+Lf(u‘)]. (25) 

For %’(U) = -Lf,.(u)Lf,(u) one has 

The coefficients of the poles of Y2( U )  as functions of U are in involution and correspond 
to integrals of motion of our problem according to (19)-(21). 

Until now in the framework of QSTM there is no procedure for calculating the 
spectrum of Lf2( U )  for non-semisimple Lie algebras like g = o(4)@e(3), but for semi- 
simple algebras the solution is known. Gaudin (1976) studied representations of algebra 
% for the N-site one-dimensional magnet on the semisimple Lie algebra gN = 
@j=l su(2). For the components S i ( u )  of the matrix N 

the commutational relations (23) hold. Here the Si” are the generators of su(2), the 
E] are given constants and U is an arbitrary complex variable. The operator S2(  U )  = 
- S i ( u ) S , ( u )  has an expansion 

with S(J) ‘=  sj(sj + 1) as Casimir operators of the sites j and 3 is a set of constants of 
motion 

The 3 are linearly dependent, i.e. I;”=1 3 = 0. The dynamical system defined by S2(  U )  
is, however, still integrable and moreover it is degenerated because of the relation 

N 

J 2 =  ( S ( ’ ) 2 + 2 ~ j 3 )  
j =  I 

that connects the Casimir operators of the sites S(J)2  and the constants of motion 3 
with the square of the total angular momentum J = ZF S‘”. This relation compensates 
the lack of one integral of motion due to the linear dependence of the XI and reflects 
the su(2) invariance of the system. 

Gaudin (1976) found the spectrum of S 2 (  U )  using the Bethe ansatz. The vacuum 
state is characterised by the maximum value of the component of the total angular 
momentum along the third axis. The eigenvector IM) of S 2 ( u )  is considered in the form 

(31) IM)=  s - ( u , ) .  . . s - ( u , w ) l o )  
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where S - ( u )  = Sl(u) - i S 2 ( u )  and M is the number of excitations. The rapidities U, 
satisfy the M algebraic relations 

Sj 
l ?  = O  a = 1 ,  . . . ,  M -- 

up -U, j = l  Ej - U, 

and determine the eigenvalues of 2f as 

It was pointed out by Gaudin (1976) that the polynomials P(u) = II,”==, (U - U,) satisfy 
the following equation of the Fuchs class: 

P ( u ) = O  P”(u)+ 2 --’(U)+ - a/ 2SJ N 

, = I  E, - U j = 1  Ej - U (34) 

and they can be treated as a generalisation of Lam6 polynomials. 

of S 2 ( u ) ,  where the matrix S ( u )  
The spectrum of z2( U )  can be obtained by a limiting transition from the spectrum 

Si r, P. Qi +-+- 1 
S ( u )  = T u i S i ( U )  &(U)=-+- 

1 U - &  U + &  u - y  u + y  (35) 

is defined on the Lie algebra g4 =e:=, o(3) with the Casimir operators P2 = Q2 = 
( fi2 - 1)/4 and y is a parameter. (This matrix S (  U )  can be of importance, for instance, 
in studying doubly excited states of helium-like atoms. The parameters E and y can 
be chosen by variational calculation.) Let us introduce the generators L = P +  Q, 
A = P -  Q of the Lie algebra o(4) instead of P and Q. In the limit y = 1 / f i +  0 and 
A -P 00 the components Ri = y-IAi = O( 1) and angular momentum Li satisfy commuta- 
tion relations of the Lie algebra e(3) with the Casimir operators R’ = 1, LR = 0. Thus 
we obtain a limit correspondence for S ( u )  on g, 

2( U )  = lim S (  U )  (36) 
Y - r O  

therefore the spectrum of 2’*(u) can be obtained from those of S 2 ( u )  on g, (35) by a 
limiting transition. 

5. Conclusion 

Our results are important in studying peculiarities of scattering amplitude for the 
Coulomb three-body problem near two-particle thresholds (Kvitsinsky et a1 1987). 

This treatment demonstrates a new field of application of the spectrum transform 
method. Also further development of the QSTM needs to be done to provide various 
and efficient computational procedures. 
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